Sanpodo: a context-dependent activator and inhibitor of Notch signaling during asymmetric divisions.
نویسندگان
چکیده
Asymmetric cell divisions generate sibling cells of distinct fates ('A', 'B') and constitute a fundamental mechanism that creates cell-type diversity in multicellular organisms. Antagonistic interactions between the Notch pathway and the intrinsic cell-fate determinant Numb appear to regulate asymmetric divisions in flies and vertebrates. During these divisions, productive Notch signaling requires sanpodo, which encodes a novel transmembrane protein. Here, we demonstrate that Drosophila sanpodo plays a dual role to regulate Notch signaling during asymmetric divisions - amplifying Notch signaling in the absence of Numb in the 'A' daughter cell and inhibiting Notch signaling in the presence of Numb in the 'B' daughter cell. In so doing, sanpodo ensures the asymmetry in Notch signaling levels necessary for the acquisition of distinct fates by the two daughter cells. These findings answer long-standing questions about the restricted ability of Numb and Sanpodo to inhibit and to promote, respectively, Notch signaling during asymmetric divisions.
منابع مشابه
Sanpodo seals precursors’ fate
Sanpodo seals precursors' fate D uring Drosophila development, sensory organ precursor (SOP) cells undergo a series of asym-metric divisions to generate mechanosen-sory bristles along the thorax of adult fl ies. Notch signaling controls the fate of the SOP cells' progeny, ensuring that each bristle contains a single neuron surrounded by hair, socket, and sheath cells. Upadhyay et al. describe h...
متن کاملSanpodo controls sensory organ precursor fate by directing Notch trafficking and binding γ-secretase
In Drosophila peripheral neurogenesis, Notch controls cell fates in sensory organ precursor (SOP) cells. SOPs undergo asymmetric cell division by segregating Numb, which inhibits Notch signaling, into the pIIb daughter cell after cytokinesis. In contrast, in the pIIa daughter cell, Notch is activated and requires Sanpodo, but its mechanism of action has not been elucidated. As Sanpodo is presen...
متن کاملNumb Independently Antagonizes Sanpodo Membrane Targeting and Notch Signaling in Drosophila Sensory Organ Precursor Cells
In Drosophila, mitotic neural progenitor cells asymmetrically segregate the cell fate determinant Numb in order to block Notch signaling in only one of the two daughter cells. Sanpodo, a membrane protein required for Notch signaling in asymmetrically dividing cells, is sequestered from the plasma membrane to intracellular vesicles in a Numb-dependent way after neural progenitor cell mitosis. Ho...
متن کاملNumb and alpha-Adaptin regulate Sanpodo endocytosis to specify cell fate in Drosophila external sensory organs.
During asymmetric cell division in Drosophila sensory organ precursors (SOPs), the Numb protein segregates into one of the two daughter cells, in which it inhibits Notch signalling to specify pIIb cell fate. We show here that Numb acts in SOP cells by inducing the endocytosis of Sanpodo, a four-pass transmembrane protein that has previously been shown to regulate Notch signalling in the central...
متن کاملNumb Localizes at Endosomes and Controls the Endosomal Sorting of Notch after Asymmetric Division in Drosophila
Numb acts as a cell-fate determinant during asymmetric and stem cell divisions in both vertebrates and invertebrates [1, 2]. In Drosophila, Numb is unequally segregated in asymmetrically dividing sensory organ precursor cells (SOPs). Numb is inherited by the pIIb cell (Notch OFF) and is absent from the pIIa cell (Notch ON) [3, 4]. Numb is required to establish directional Notch signaling during...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 136 24 شماره
صفحات -
تاریخ انتشار 2009